A Global Jacobian Method for Mortar Discretizations of Nonlinear Porous Media Flows

نویسندگان

  • Benjamin Ganis
  • Mika Juntunen
  • Gergina Pencheva
  • Mary F. Wheeler
  • Ivan Yotov
چکیده

We describe a non-overlapping domain decomposition algorithm for nonlinear porous media flows discretized with the multiscale mortar mixed finite element method. There are two main ideas: (1) linearize the global system in both subdomain and interface variables simultaneously to yield a single Newton iteration; and (2) algebraically eliminate subdomain velocities (and optionally, subdomain pressures) to solve linear systems for the 1st (or the 2nd) Schur complements. Solving the 1st Schur complement system gives the multiscale solution without the need to solve an interface iteration. Solving the 2nd Schur complement system gives a linear interface problem for a nonlinear model. The methods are less complex than a previously developed nonlinear mortar algorithm, which requires two nested Newton iterations and a forward difference approximation. Furthermore, efficient linear preconditioners can be applied to speed up the iteration. The methods are implemented in parallel, and a numerical study is performed to demonstrate convergence behavior and parallel efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Global Jacobian Method for Mortar Discretizations of a Fully Implicit Two-Phase Flow Model

We consider a fully implicit formulation for two-phase flow in a porous medium with capillarity, gravity, and compressibility in three dimensions. The method is implicit in time and uses the multiscale mortar mixed finite element method for a spatial discretization in a nonoverlapping domain decomposition context. The interface conditions between subdomains are enforced in terms of Lagrange mul...

متن کامل

Efficient algorithms for multiscale modeling in porous media

We describe multiscale mortar mixed finite element discretizations for second order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mo...

متن کامل

Multiblock Modeling of Flow in Porous Media and Applications

We investigate modeling flow in porous media in multiblock domain. Mixed finite element methods are used for subdomain discretizations. Physically meaningful boundary conditions are imposed on the non-matching interfaces via mortar finite element spaces. We investigate the pollution effect of nonmatching grids error on the numerical solution away from interfaces. We prove that most of the error...

متن کامل

A Mixed Nite Element Discretization on Non-matching Multiblock Grids for a Degenerate Parabolic Equation Arising in Porous Media Ow

| Mixed nite element methods on multiblock domains are considered for nonlinear degenerate parabolic equations arising in modeling multiphase ow in porous media. The subdomain grids need not match on the interfaces, where mortar nite element spaces are introduced to properly impose ux-matching conditions. The low regularity of the solution is treated through time integration, and the degeneracy...

متن کامل

An experimental study on hydraulic behavior of free-surface radial flow in coarse-grained porous media

The equations of fluids in porous media are very useful in designing the rockfill and diversion dams, gabions, breakwaters and ground water reserves. Researches have been showed that the Forchheimer equation is not sufficient for the analysis of hydraulic behavior of free-surface radial flows; because, in these flows, in addition to the hydraulic gradient and velocity, the variable of radius is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014